379. The Dipole Moments of Some Aromatic Diazoamino-compounds.

By R. J. W. Le Fèvre and H. Vine.

The dielectric constants, densities, and refractive indices of solutions in benzene of diazoaminobenzene and some derivatives are recorded, and the dipole moments calculated from them.

It is concluded that in these compounds the two aryl groups are mutually inclined at $c a .140^{\circ}$. The change with concentration of the polarisation of the parent substance is considered in relation to the nature of the association which it undergoes (Hunter, this vol., p. 320) ; this does not appear to consist entirely of the formation of nonpolar dimeric molecules.

The following dipole moments (in Debye units) have been obtained by measurements carried out on benzene solutions :

Diazoaminobenzene derivative.	μ.	Diazoaminobenzene derivative.	μ.
(Unsubstituted)	$0 \cdot 90$	4-Bromo-	$2 \cdot 0_{0}$
4: 4'-Dichloro-	$1 \cdot 90$	4-Nitro-	${ }^{4} \cdot 77$
4: 4'-Dibromo-	$1 \cdot 88$	N-Methyl-	$1 \cdot 49$
4 : 4^{\prime}-Dimethyl-	$0 \cdot 93$	4 : $\mathbf{4}^{\prime}$-Dibromo- N-methyl-................$~$	$2 \cdot 5_{2}$

The polarisation of diazoaminobenzene has also been measured in solutions of concentration up to 8%. Two points concerning which these data give some information are discussed below.
(1) Structure of the Diazoamino-compounds.--The system R $\cdot \mathrm{N}: \mathrm{N} \cdot \mathrm{NHR}^{\prime}$ or $\mathrm{R} \cdot \mathrm{N}: \mathrm{N} \cdot \mathrm{NMeR}^{\prime}$ is complicated by the possibility of cis-trans-isomerism about the N:N bond and of rotation about the $\mathrm{N}-\mathrm{N}$ single link. It may well be assumed, however, that, whether the azo-group has a cis- or a trans-configuration in the parent substance, it has the same configuration in the derivatives, and further that, if rotation occurs in the former about the $\mathrm{N}-\mathrm{N}$ bond, it does so to the same extent in the latter. Hence the effective angle made by the $\mathrm{N}-\mathrm{R}$ and the $\mathrm{N}-\mathrm{R}^{\prime}$ direction should be approximately constant throughout the whole series. Moreover, the not unlikely occurrence of mesomeric effects within such molecules (producing real states in which the three central nitrogen atoms are united by links having a partial double-bond character) may be expected to confer a greater stiffness and resistance to rotation about the $\mathrm{N}-\mathrm{N}$ link than the above unperturbed formulæ indicate.

In this discussion the phenyl groups have been regarded as symmetrical, and the $\mathrm{C} \rightarrow \mathrm{Hal}$ and $\mathrm{C} \rightarrow \mathrm{NO}_{2}$ vectors taken as acting along the $\mathrm{N}-\mathrm{R}$ and $\mathrm{N}-\mathrm{R}^{\prime}$ directions and mecting at an angle 0 . If it is assumed in the first instance that the resultant moments of diazoaminobenzenc and its 4:4'-disubstituted derivatives are parallel to the bisector of 0 , it is possible to estimate this angle by vector methods. The accuracy of the values obtained in such cases is reduced chiefly by interaction between the substituents and the molecule containing them (sce Glasstone, Ann. Reports, 1935, 32, 129). To some extent these effects may be allowed for in the dihalogeno-derivatives by taking as the C--Hal link moments the values obtained by Bergmann, Engel, and Sandor (Ber., 1930, 63, 2572) for p-chloro- and -bromo-azobenzenes in benzene solution.

Since the effect of replacing two hydrogen by two chlorine atoms in the $4: 4^{\prime}$-positions is to increase the moment from 0.90 to 1.94 , it is evident that, subject to the above approximations, the two $\mathrm{C}-\mathrm{Cl}$ moments $(\mathbf{1} \cdot 55)$ themselves produce a component of either

Then

$$
1.94+0.90=2 \times 1.55 \cos 0 / 2, \text { whence } 0=47 \frac{1}{2}^{\circ},
$$

or

$$
1 \cdot 94-0 \cdot 90=2 \times 1 \cdot 55 \cos 0 / 2, \text { whence } 0=141^{\circ} .
$$

These two solutions are illustrated in (I) and (II). If the former figure were the true one, the moment of 4:4'-dimethyldiazoaminobenzene would be measurably different from
that of its parent, i.e., approximately $0.9+2 \times 0.3=1.5$. Actually its moment is 0.9 , which is in better agreement with the second result. An angle of $47 \frac{1}{2}^{\circ}$ also appears, on general grounds, to be improbable.

The occurrence of the interaction mentioned above does not disturb the calculation very seriously, for the value of θ is not greatly affected if a different value is taken for the

$\mathrm{C}-\mathrm{Cl}$ moment; for example, if in the above calculation this were $1 \cdot 55 \pm 0 \cdot 1, \theta$ would be $140^{\circ} 45^{\prime} \pm 2^{\circ} 30^{\prime}$.

If the resultant moment of $4: 4^{\prime}$-dichlorodiazoaminobenzene is not parallel to the bisector of θ, but is at an angle A to this line, θ being approximately 140°, it can be shown that a more accurate value is given by the equation

$$
\cos \theta / 2=(1.94 \sec A-0.90) / 2 \times 1.55
$$

Then if A is as great as $12^{\circ}, \theta$ becomes $139^{\circ} 20^{\prime}$. The correction is small, and is of opposite sign to, and of the same order of magnitude as, that for interaction.

Similarly, Bergmann, Engel, and Sandor's value (loc. cit.) of 1.42 for p-bromoazobenzene being taken as the appropriate $\mathrm{C}-\mathrm{Br}$ link moment,

$$
1.88-0.90=2 \times 1.42 \cos \theta / 2, \text { whence } \theta=140^{\circ} .
$$

A reliable confirmatory value could not be obtained from the moment of $4: 4$ '-dinitrodiazoaminobenzene, as this substance was too sparingly soluble in benzene.

The difference between the moments of N-methyl- and 4:4'-dibromo- N-methyldiazoaminobenzene corresponds to a similar angle :

$$
2.52-1.49=2 \times 1.42 \cos \theta / 2, \text { and } \theta=137 \frac{1}{2}^{\circ} .
$$

The value of θ in both the methylated and the unmethylated compounds may thus be given as 140°, with a probable error of less than 5°.

The moments of 4 -bromo- and 4 -nitro-diazoaminobenzene are found to be of no service in calculating θ, for the answers obtained depend very largely on the values taken for the $\mathrm{C}-\mathrm{Br}$ and $\mathrm{C}-\mathrm{NO}_{2}$ link moments; e.g., if the moment of the 4 -bromo-derivative were the resultant of a group moment of 0.90 along the bisector of θ and a $\mathrm{C}-\mathrm{Br}$ link moment of 1.37 or 1.47 at an angle $\theta / 2$ to it, θ should satisfy the equation

$$
(2.00)^{2}=(1.37)^{2}+(0.90)^{2}+2 \times 1.37 \times 0.90 \cos \theta / 2, \text { whence } \theta=116^{\circ} ;
$$

or

$$
(2.00)^{2}=(1.47)^{2}+(0.90)^{2}+2 \times 1.47 \times 0.90 \cos \theta / 2, \text { whence } \theta=134^{\circ} .
$$

Similarly, if 4.0 or $4 \cdot 1$ is taken for the $\mathrm{C}-\mathrm{NO}_{2}$ link in 4 -nitrodiazoaminobenzene,

$$
(4.77)^{2}=(4.0)^{2}+(0.90)^{2}+2 \times 4.0 \times 0.90 \cos \theta / 2, \text { whence } \theta=67^{\circ} ;
$$

or

$$
(4.77)^{2}=(4.1)^{2}+(0.90)^{2}+2 \times 4.1 \times 0.90 \cos \theta / 2, \text { whence } 0=91^{\circ} .
$$

(2) Association of Diazoaminobenzene in Benzene Solution.-The slight decrease in the polarisation of diazoaminobenzene with concentration is qualitatively in agreement with Hunter's observations (this vol., p. 320) of the molecular weights of diazoaminocompounds in benzene solution. He finds that association occurs as the solutions become more concentrated, and suggests the formation of a double molecule by resonance. He puts forward two possible forms, the first of which would be highly polar, and its formation would correspond to an increase in the polarisation, whilst the second form, which he regards as the more probable, would apparently have zero moment. His results, expressed as the association factor A, the ratio of the apparent to the true molecular weight, are shown in curve I. The dimeric form being assumed to have zero moment, the same factor has been calculated from the polarisation measurements (curve II) : I is clearly much steeper than II. The divergence may be attributed to the incorrectness of the assumption that association consists entirely of the formation of non-polar double molecules.

Experimental.

Preparation of Materials.- N-Methyldiazoaminobenzene was made from methylanilíne and diazotised aniline; being an unstable liquid, it was purified by dissolving it in alcohol and cooling the solution in solid carbon dioxide-alcohol, whereupon it separated as a pale yellow sticky material. The most likely impurity was then methylaniline; to
 test the effect of this, the polarisation of a sample containing 10% was measured and found to be practically unchanged. 4: 4'-Dibromo- N methyldiazoaminobenzene, previously obtained only by direct methylation, was readily prepared from p-bromomethylaniline and diazotised aniline.

Diazoaminobenzene and its 4: 4^{\prime}-dimethyl-derivative were obtained in a pure state in one operation by a slight modification of Meunier's method (Comp. rend., 1903, 137, 1264; cf. Earl, Proc. Roy. Soc. N.S.W., 1929, 53, 89; 1930, 54, 96). The base ($0 \cdot 1$ g.-mol.), sodium nitrite ($0.2 \mathrm{~g} .-\mathrm{mol}$.), water ($40 \mathrm{c} . \mathrm{c}$.), and alcohol (40 c.c.) were treated with carbon dioxide for about 4 hours. Filtration gave the diazoamino-compounds as pure yellow needles, m. p. 99° and $117.5-118^{\circ}$ respectively. The latter m. p. is $1-1.5^{\circ}$ greater than the highest previously recorded (Witt, Ber., 1877, 10, 1309).

Measurements, and Calculation of Results.-The dielectric constant and density of solutions of many substances vary linearly with concentration and can be expressed by the equations $\varepsilon=\varepsilon_{2}\left(1+\alpha f_{1}\right)$ and $d=d_{2}\left(1+\beta f_{1}\right)$, where the suffixes 1 and 2 denote the solute and solvent respectively and f is the mol.-fraction. Hedestrand (Z. physikal. Chem., 1929, B, 2, 428) has shown that the molecular polarisation at infinite dilution can be calculated from α and β thus,

$$
P_{1_{\infty}}=A\left(M_{1}-\beta M_{2}\right)+B \alpha \varepsilon_{2}
$$

where A and B are constant. Fairly concentrated solutions can be used, and α and β determined accurately, whereas graphical extrapolation requires very dilute solutions from which P_{1} cannot be found accurately.

A similar expression is obtained if the weight fraction w_{1} and the specific polarisations p_{1} and p_{2} are used, and this involves less work in the calculation. Let $\varepsilon=\varepsilon_{2}\left(1+\alpha w_{1}\right)$ and $d=d_{2}\left(1+\beta w_{1}\right) ;$ then

$$
\begin{aligned}
p_{1} & =\left(p_{12}-p_{2} w_{2}\right) / w_{1} \\
& =\frac{\varepsilon-1}{\varepsilon+2} \cdot \frac{1}{d}+\frac{w_{2}}{w_{1}}\left(\frac{\varepsilon-1}{\varepsilon+2} \cdot \frac{1}{d}-\frac{\varepsilon_{2}-1}{\varepsilon_{2}+2} \cdot \frac{1}{d_{2}}\right) \\
& =\frac{\varepsilon-1}{\varepsilon+2} \cdot \frac{1}{d}+\frac{w_{2}}{d} \cdot \frac{3 \alpha \varepsilon_{2}-\beta\left(\varepsilon_{2}-1\right)\left[\varepsilon_{2}\left(1+\alpha w_{1}\right)+2\right]}{\left[\varepsilon_{2}\left(1+\alpha w_{1}\right)+2\right]\left[\varepsilon_{2}+2\right]}
\end{aligned}
$$

$\begin{gathered} w_{1} . \\ 0 \end{gathered}$	$\begin{gathered} \epsilon_{255}^{1200} . \\ 2 \cdot 2725 \end{gathered}$	$\begin{gathered} d_{4^{\circ} 5^{\circ}} . \\ 0.87378 \end{gathered}$	$\begin{gathered} p_{12} . \\ 0: 34086 \end{gathered}$	${ }_{1}{ }_{1}$	$a \epsilon_{2} .$	β.	$\begin{gathered} r_{19}^{25^{\circ}} \\ 1.49724 \end{gathered}$	$\begin{gathered} r_{12} . \\ 0 \cdot 33503 \end{gathered}$	$\left[R_{L} /\right]_{\mathrm{v}}$.
Diazoaminobenzene.									
0.00351	$2 \cdot 2759$	0.87451	0.34121	86.9	$0 \cdot 97$	$0 \cdot 238$	1-49795	0.33494	$72 \cdot 7$
$0 \cdot 01188$	$2 \cdot 2837$	0.87624	$0 \cdot 34200$	$86 \cdot 1$	0.94	$0 \cdot 237$	$1 \cdot 49948$	0. 333536	71.5
(0.02589	$2 \cdot 2970$	0.87923	$0 \cdot 34330$	85.7	$0 \cdot 95$	$0 \cdot 241$	1.50203	$0 \cdot 33566$	$70 \cdot 7$
$0 \cdot 02900$	$2 \cdot 3001$	0.87992	$0 \cdot 34360$	85.7	$0 \cdot 95$	0.243	$1 \cdot 50263$	0. 335374	70.7
0.03587	$2 \cdot 3057$	0.88126	$0 \cdot 34411$	$8: 5 \cdot 1$	$0 \cdot 926$	0.239	$1 \cdot 50388$	$0 \cdot 33594$	$70 \cdot 9$
0.04187	$2 \cdot 3117$	0.88257	$0 \cdot 34470$	$85 \cdot 3$	0.936	$0 \cdot 240$	1-50492	0.33602	70.7
$0 \cdot 07100$	2.3398	0.88880	$0 \cdot 34735$	$85 \cdot 1$	0.948	0.24:3	1.51012	$0 \cdot 33657$	$70 \cdot 3$
0.08486	$2 \cdot 3514$	$0 \cdot 89182$	$0 \cdot 34824$	$84 \cdot 3$	0.930	0.243	1.51273	$0 \cdot 33687$	$70 \cdot 3$
4: 4'-Dimethyldiazoaminobenzene.									
$0 \cdot 00774$	2.2788	0.87518	0.34149	95	0.81	$0 \cdot 207$	-	-	
0.00826	$2 \cdot 2797$	0.87523	$0 \cdot 34164$	98	0.87	$0 \cdot 201$	$1 \cdot 49859$	0.33524	$81 \cdot 0$
$0 \cdot 00929$	2.2806	0.87 .543	$0 \cdot 34173$	98	0.87	$0 \cdot 203$		-	
$0 \cdot 01663$	2.2872	0.87677	$0 \cdot 34244$	98	0.88	$0 \cdot 206$	1.49996	$0 \cdot 33543$	$80 \cdot 8$
$0 \cdot 02000$	$2 \cdot 2906$	0.87729	$0 \cdot 34287$	99	$0 \cdot 90$	$0 \cdot 201$	-		
$0 \cdot 03009$	$2 \cdot 2993$	0.87902	$0 \cdot 34381$	99	$0 \cdot 89$	$0 \cdot 199$	1.50228	$0 \cdot 33589$	81.7
4:4'-Dichlorodiazoaminobenzene.									
$0 \cdot 00460$	2.2829	0.87518	$0 \cdot 34226$	172	$2 \cdot 26$	$0 \cdot 348$	$1 \cdot 49803$	$0 \cdot 33494$	83.9
$0 \cdot 00739$	2.2884	0.87608	$0 \cdot 34294$	165	$2 \cdot 15$	$0 \cdot 353$	1.49843	$0 \cdot 33483$	$81 \cdot 9$
$0 \cdot 00995$	$2 \cdot 2935$	0.87687	$0 \cdot 34357$	163	2.11	$0 \cdot 352$	$1 \cdot 49891$	0. 33480	83.0
0.01518	$2 \cdot 3020$	0.87849	$0 \cdot 34451$	151	1.95	$0 \cdot 351$	$1 \cdot 49967$	0.33461	81.7
0.02148	$2 \cdot 3146$	-	-	-	1.96	-	-	-	
0.02470	$2 \cdot 3200$	-	-	-	$2 \cdot 00$	-	-	-	
4:4'-Dibromodiazoaminobenzene.									
$0 \cdot 00261$	$2 \cdot 2757$	0.87490	0.34102	143	1.23	$0 \cdot 491$	$1 \cdot 49762$	0.33482	$90 \cdot 4$
0.00430	$2 \cdot 2794$	0.87566	$0 \cdot 34142$	167	$1 \cdot 60$	$0 \cdot 500$	$1 \cdot 49787$	$0 \cdot 33467$	$89 \cdot 1$
0.00779	$2 \cdot 2838$	0.87722	$0 \cdot 34163$	156	$1 \cdot 45$	$0 \cdot 505$	$1 \cdot 49841$	$0 \cdot 33438$	$89 \cdot 1$
0.01042	$2 \cdot 2888$	-	-	-	$1 \cdot 56$	-		---	
0.01487	$2 \cdot 2949$	$0 \cdot 88035$	$0 \cdot 34247$	159	1.51	$0 \cdot 505$	1.49939	$0 \cdot 33375$	88.4
0.02139	$2 \cdot 3042$	-			1.48	-	-		
4-Bromodiazoaminobenzene.									
0.00857	$2 \cdot 2892$	0.87694	$0 \cdot 34275$	155	$1 \cdot 95$	0.422	1.49865	0.33462	79.2
0.01588	$2 \cdot 3050$	0.87941	$0 \cdot 34470$	161	2.05	$0 \cdot 406$	1.49978	0.33432	$80 \cdot 0$
0.03571	$2 \cdot 3468$	0.88681	$0 \cdot 34938$	160	$2 \cdot 08$	$0 \cdot 418$	1.50291	0. 33329	$78 \cdot 9$
0.04634	$2 \cdot 3700$	0.89053	0.35093	154	$2 \cdot 10$	0.413	1.50474	0.33292	79.9
0.05360	$2 \cdot 3850$	0.89335	0.35356	160	$2 \cdot 10$	0.418	1.50582	$0 \cdot 33247$	$79 \cdot 3$
4-Nitrodiazoaminobenzene.									
$0 \cdot 00265$	$2 \cdot 3030$	0.87455	$0 \cdot 34625$	574	11.5	0.332	1.49776	0.33503	92
$0 \cdot 00414$	$2 \cdot 3191$	0.87501	$0 \cdot 34904$	564	$11 \cdot 3$	$0 \cdot 340$	1.49808	0. 33504	93
$0 \cdot 00462$	$2 \cdot 3240$	0.87515	$0 \cdot 34988$	55.5	11.1	0.339	1.49818	$0 \cdot 33504$	93
$0 \cdot 00566$	2.3358	0.87541	$0 \cdot 35193$	556	11.2	0.331	1.49846	0.33510	96
$0 \cdot 00583$	$2 \cdot 3362$	0.87548	$0 \cdot 35198$	544	$10 \cdot 9$	$0 \cdot 334$	1.49842	$0 \cdot 33505$	93
N-Methyldiazoaminobenzene.									
0.00789	$2 \cdot 2859$	0.87528	0.34278	123	1.70	0.217	1.49856	$0 \cdot 33521$	$75 \cdot 5$
0.01525	$2 \cdot 2970$	0.87672	0.34428	119	$1 \cdot 61$	$0 \cdot 221$	$1 \cdot 49970$	$0 \cdot 33530$	$74 \cdot 5$
0.02245	2-3097	0.87815	$0 \cdot 34606$	121	$1 \cdot 657$	$0 \cdot 223$	1.50089	$0 \cdot 33543$	$74 \cdot 5$
0.03281	$2 \cdot 3260$	0.88022	$0 \cdot 34823$	119	1.631	$0 \cdot 224$	1-50264	$0 \cdot 33563$	$74 \cdot 7$
0.04623	$2 \cdot 3463$	0.88285	0.35086	118	1.596	$0 \cdot 224$	-	-	-
4 : 4'-Dibromo- N -methyldiazoaminobenzene.									
0.00571	$2 \cdot 2858$	0.87619	0.34241	226	$2 \cdot 33$	0.483	-	-	
0.00745	$2 \cdot 2899$	$0 \cdot 87692$	0.34289	227	$2 \cdot 34$	0.482	1.49825	0.33440	$92 \cdot 3$
0.01443	$2 \cdot 3048$	0.87990	$0 \cdot 34446$	218	$2 \cdot 24$	$0 \cdot 485$	1.49919	$0 \cdot 33380$	$92 \cdot 3$
0.02133	$2 \cdot 3205$	0.88282	0.34620	218	$2 \cdot 25$	0.485	$1 \cdot 50021$	0.33328	93.4

Mean values of						
Diazoaminobenzene derivative.	M.	$\alpha \epsilon_{2}$.	β.	P_{∞}	$\left[R_{L}\right]_{\mathrm{D}}$.	μ.
(Unsubstituted)	197	$0 \cdot 940$	$0 \cdot 241$	85.8	$70 \cdot 6$	$0 \cdot 90-1.0 \cdot 02$
4 : 4'-Dimethyl-	225	$0 \cdot 87$	$0 \cdot 203$	$98 \cdot 1$	$81 \cdot 2$	$0 \cdot 90$:. 0.04
4: 4'-Dichloro-	266	$2 \cdot 04$	$0 \cdot 351$	161	83	1.94 :1: 0.04
4: 4'-Dibromo-	355	1.52	$0 \cdot 503$	162	89	1.88: 0.04
4-Bromo-	276	$2 \cdot 06$	$0 \cdot 415$	162	79.5	$2 \cdot 00 \cdot 1.0 \cdot 04$
4-Nitro-	242	11.2	0.3:35	565	93	$4.77-0.06$
N-Methyl-	211	$1 \cdot 64$	$0 \cdot 223$	$120 \cdot 9$	$74 \cdot 8$	$1.49: 0.03$
4 : $\mathbf{4}^{\prime}$-Dibromo- N-methyl-	369	$2 \cdot 29$	0.484	224	93	2.52 ± 0.04

Taking the limit, as $w_{1} \rightarrow 0$,

$$
\begin{align*}
p_{\infty} & =\frac{\varepsilon_{2}-1}{\varepsilon_{2}+2} \cdot \frac{1}{d_{2}}+\frac{3 \alpha \varepsilon_{2}}{}-\frac{\left.\beta_{1}^{\prime} \varepsilon_{2}-1\right)\left(\varepsilon_{2}+2\right)}{d_{2}\left(\varepsilon_{2}+2\right)^{2}} \\
& =\frac{\varepsilon_{2}-1}{\varepsilon_{2}+2} \cdot \frac{1}{d_{2}}(1-\beta)+\frac{3 \alpha \varepsilon_{2}}{d_{2}\left(\varepsilon_{2}+2\right)^{2}} \\
& =p_{2}(1-\beta)+c \alpha \varepsilon_{2} . \quad . \quad . \quad . \tag{1}
\end{align*}
$$

where p_{2} and c are constants for the solvent and were equal to 0.34086 and $0 \cdot 18809$ respectively for the benzene used.

Density and dielectric constant were plotted against w_{1} for the solutions of each substance and found to give good straight lines; $\alpha \varepsilon_{2}$ and β were, therefore, obtained and p_{∞} calculated by means of the equation (1). The data are tabulated on page 1808.

Association of Diazoaminobenzene.-If a substance ' a ' is partly associated in solution, let $w_{a}, w_{a_{2}}$, and $w_{a_{2}}$ be the weight fractions and ${ }_{o} p_{a}$, o $p_{a_{2}}$, and ${ }_{\mathrm{o}} p_{a_{2}}$ the specific orientation polarisations of the mixture and of the mono- and the di-meric form respectively, and let $\gamma w_{a}=w_{a_{i}}$.

Then

$$
\begin{aligned}
\mathrm{o} p_{a} w_{a} & ={ }_{\mathrm{o}} p_{a_{1}} w_{a_{1}}+{ }_{\mathrm{o}} p_{a_{2}} w_{a_{3}} \\
\mathrm{o} p_{a} & ={ }_{\mathrm{o}} p_{a_{1}}(1-\gamma)+{ }_{\mathrm{o}} p_{a_{2}} \gamma \\
\gamma & =\left({ }_{\mathrm{o}} p_{a_{1}}-{ }_{\mathrm{o}} p_{a}\right) /\left({ }_{\mathrm{o}} p_{a_{1}}-{ }_{\mathrm{o}} p_{a_{2}}\right)
\end{aligned}
$$

If ${ }_{o} p_{a_{1}}=0$ and if r_{a} is the specific refraction of a,

$$
\begin{equation*}
\gamma=\left(p_{a_{1}}-p_{a}\right) /\left(p_{a_{1}}-r_{a}\right) \tag{2}
\end{equation*}
$$

It is easily seen that the association factor A is equal to $2 /(2-\gamma)$.
The measurements show that the specific refraction of diazoaminobenzene is 0.3585 . By assuming $\alpha \varepsilon_{2}=0.940$ and $\beta=0.241$, values of d and ε have been calculated at various concentrations, from which the specific polarisation has been obtained. Formula (2) has been used to find A in each case, p_{∞} being taken as 0.4355 , as calculated from equation (1). The results are expressed by curve II in the diagram.

University College (University of Londo:).
[Received, June 24th, 1937.]
Note (added September 27th, 1937).-Since the preceding results were obtained, it has been shown (Hartley, Nature, 1937, 140, 281) that azobenzene is partly converted in solution into the cis-form when exposed to daylight. Measurements of the dipole moments of the pure cis-, pure trans-, and equilibrated azobenzenes have been carried out by one of us and reported briefly in the above reference. Illumination causes a considerable increase in the dielectric constants of solutions of the stable trans-form. It was, therefore, considered important to discover whether errors have been introduced into the measurement of the dielectric constant of solutions of the diazoamino-compounds owing to their being allowed to stand in ordinary white glass vessels. The dielectric constants (ε_{I}) of solutions of diazoaminobenzene and $4: 4^{\prime}$-dibromo- N-methyldiazoaminobenzene which have been kept in brown bottles have been compared with those ($\varepsilon_{\text {II }}$) of solutions which have been exposed to bright sunlight for about 3 hours. As the differences (see below) are small, the results tabulated above are considered to be satisfactory.

Diazoaminobenzene.

w_{1}.	ϵ_{I}.	ϵ_{11}.
0.01888	$2 \cdot 2887$	2.2891
0.04912	2.3190	2.3198

$4: 4^{\prime}$-Dibromo-N-methyldiazoaminoberizene.		
w_{1}.	ϵ_{1}.	$\epsilon_{\text {II }}$.
0.01614	2.3083	2.3079
0.02256	2.3228	2.3230

